Smart Card Technology Capabilities

Won J. Jun

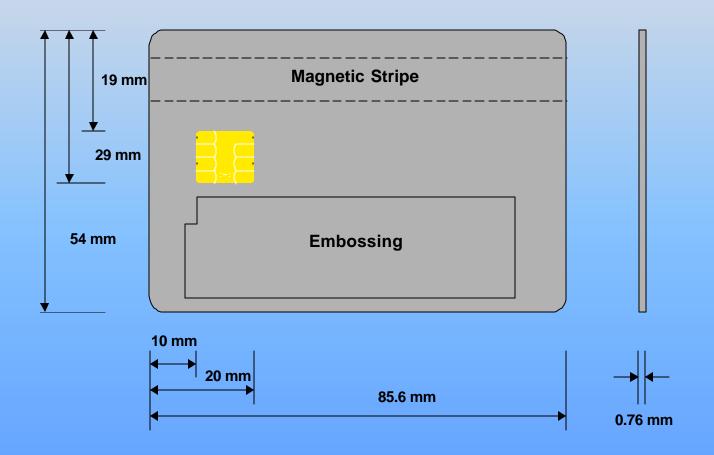
Giesecke & Devrient (G&D)

July 8, 2003

Table of Contents

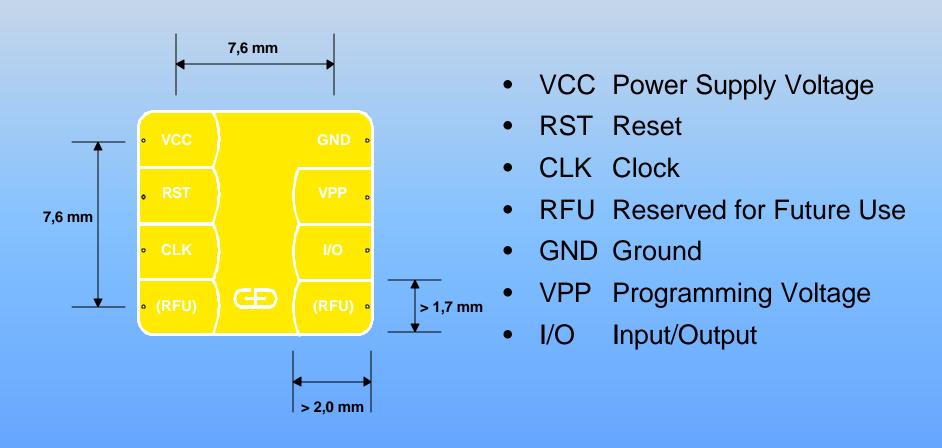
- Smart Card Basics
- Current Technology
- Requirements and Standards
- Next Steps

Smart Card Basics


- Definition
- Components
- Different Types
- Standards and Specifications
- Applications

Definition

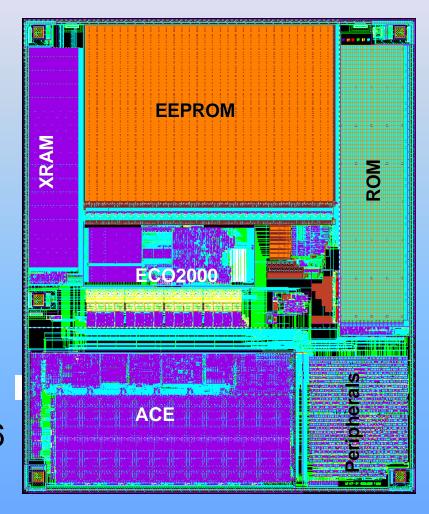
- What is a smart card?
 - A plastic card with an embedded microprocessor chip.
- What is the essence of a smart card?
 - Authentication
 - Data storage
 - Validation
 - Self-lock mechanism


The Dimensions

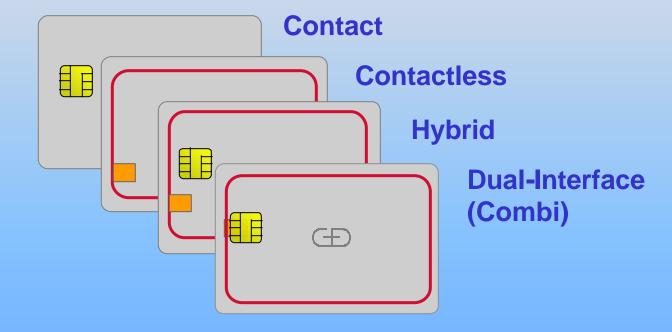
Smart Card according to ISO/IEC 7810 and ISO/IEC 7816-2


The Contacts

Contacts of the Smart Card Module according ISO/IEC 7816-2


The Module

Cross-Section of a Smart Card Module



The Chip

- Features:
 - 32 kByte ROM
 - 16 kByte EEPROM
 - 1.3 kByte RAM
 - Crypto Unit ACE
- Chip size:
 - $Area = 21.23 \text{ mm}^2$
 - x = 4.28 mm, y = 4.96

Different Types

How Smart?

- Simple Memory Card
 - No Security
- Intelligent Memory Cards
 - Access Control Conditions for defined areas
 - Dedicated functionality (e.g., Telephone-Chip Card)
- Microprocessor Card
 - Microcomputer / Microcontroller
- Super Smart Card
 - Microcomputer, Keypad, Display, Battery, etc.

Relevant Standards and Specs

- ISO 7810
- ISO 7816
- ISO 14443 Types A and B
- Java Card 2.1.1 and 2.2
- Global Platform Card Specification 2.0.1' and 2.1
- GSCIS v2.1 (draft)

Types of Usage

- Identification and authentication
- Encryption and digital signature (RSA 1024/2048 bit; on-card key-pair generation)
- Biometric (on-card matching)
- Secure Data storage
- Single Sign-on

Assessing the Current Technology

Areas to Assess:

- Card Operating System (COS)
- Protocol
- Memory capacity
- Functionality

Card Operating System

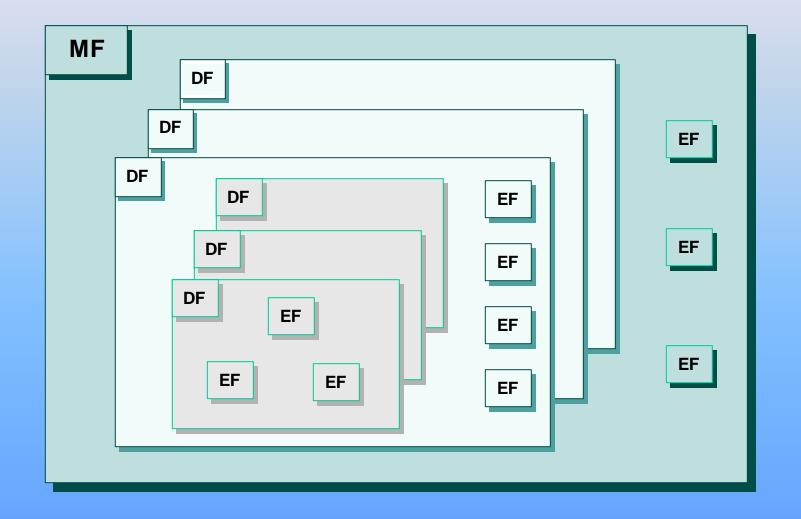
File-structure vs. Java Card

ISO 7816 part 4 + compliant COS

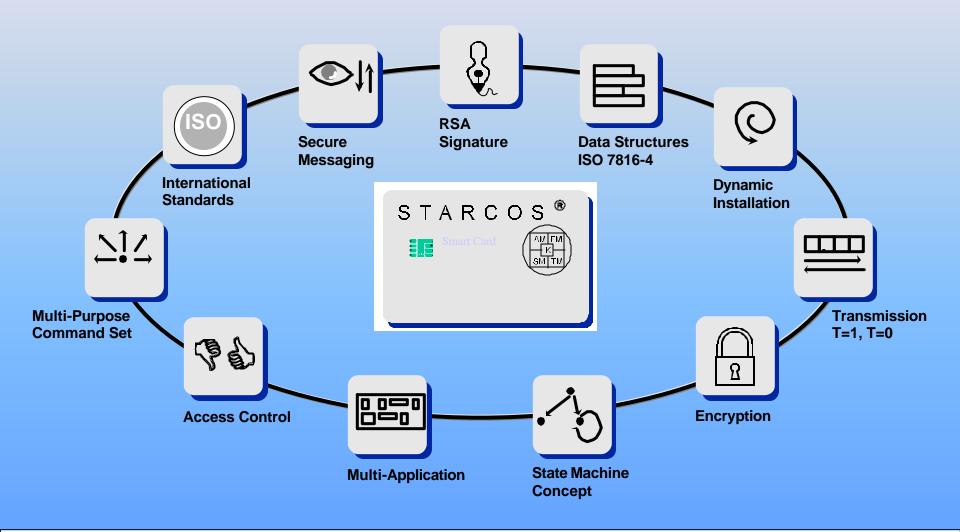
Java Card and Global Platform compliant COS

Analogous to

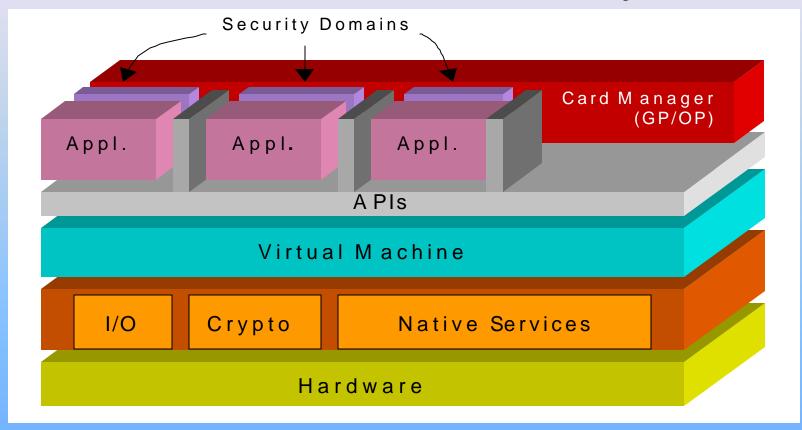
Unix



Windows ®TM


There are Pro's and Con's for both types of COS's. Both can be made secure and flexible. It is analogous to comparing Unix and Windows®™ operating systems. The philosophical arguments can be made for file-structure-based or Java-based card.

However......Java Cards are in fashion!


File-Structure Based Smart Cards

Purpose of a Smart Card OS

Java Card Security

 Security is provided by the JCVM, Firewalls and Security Domains

Java Card Basics

- A multi-application smart card
 - Several applications can be loaded on to the same card
 - "Firewall" between applications
 - Sharing between applications
 - ISO-7816/4 compliant application selection.
- Smart card interoperable---
 - at the source code level
 - at the load file level
 - at the loader level.

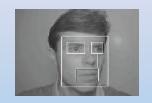
Protocol

- T=0: Byte transfer. Developed by the French
- T=1: Block transfer. Developed by the Germans
- USB: Based on existing USB v.1.1+ Specs.

Memory Capacity

- 16 KB
- 32 KB *
- 64 KB
- 128 KB

* Currently most popular


Functionality

Highlights:

- RSA 1024/2048 bit algorithms
- Triple-DES, SHA-1
- On-card key-pair generation
- On-card Biometrics matching engine

Biometrics On-card Matching

Main advantages:

Sensor independent

- Latest developments:
- Fingerprint on-card matching
- Iris on-card matching
- On-card matching Java applet

Basics of On-card Matching

- The actual data is preprocessed in the background system and sent to the card
- Biometric verification takes place on the chip card
- Reference data does not leave the card
- The card itself changes the security status (e.g., unblocks itself) after a successful verification.

Other Form Factors

- Smart chip with USB interface.
 - Same Chip Operating System as on smart card.
 - Connectivity through USB port. Smart card reader not necessary.

- Three features in one single USB device:
 - Multiapplication smart card operating system
 - Fingerprintsensor
 - Imageprocessing software

Current Trends

- Java Card 2.1
- Global Platform 2.0.1'
- 32 to 64K EEPROM
- On-card key-pair generation (RSA 1024-bit)
- Biometric on-card matching (fingerprint)
- Hybrid and composite card bodies (ISO 14443)
- FIPS 140-2, Level 2 or 3

Current Trends

Requirements and Standards

CAC Release 2.0 ICC Specification	
 Java Support 	➤ Java Card 2.1
• Standards:	➤ ISO 7816, parts 1-7
	> T=0
	➤ EMV.
	➤ Global Platform 2.0.1.
	➤ DAP verification
	Delegated management and services
	➤ ISO 10373 Parts 1-3
	➤ ISO 7810
	➤ GSCIS 2.0
Micro-controller/ Processor:	➤ 32KB EEPROM
	> 8-bit processor.
	Cypto co-processor

Requirements and Standards

CAC Release 2.0 ICC Specification (Cont'd)	
Crypto Algorithms:Digest Algorithms:Key Exchange:Signature Algorithms:	 ➤ Triple DES ➤ SHA-1 ➤ RSA ➤ RSA (1024-bit key length) ➤ FIPS PUB 180-1 Secure Hash Standard ➤ FIPS PUB 186-1 Digital Signature Standard
On-Card Key Generation	> 30 seconds or less
Security:	 FIPS 140, Level 2 or 3 validation Countermeasures for Differential Power Analysis and Simple Power Analysis Attacks

Requirements and Standards

Requirements on the horizon:

- ≥ 2048-bit key length
- On-card Biometric Verification
- Contactless PKI
- Hybrid and Dual-interface cards
- Super Smart Cards

Next Steps

- Standards are needed to address the coming requirements.
- Existing standards may need to be updated to accommodate the changing technology.
- Validations are needed to test conformance.